«

»

From powder to water makes nanoribbons from carbon nanotubes

2tubes2-01

Nanotubos de carbono funcionalizado com COOH e OH. Colocados em contato reagem produzem água e liberando energia.

 

Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations.

The research was supported by the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative; the Brazilian National Council for Scientific and Technological Development, CAPES (Coordination of Improvement of Higher Education Personnel) and the São Paulo Research Foundation; the Center for Computational Engineering and Sciences at the State University of Campinas, and the Nano Mission, Government of India.

Mohamad A Kabbani, Chandra Sekhar Tiwary, Pedro AS Autreto, Gustavo Brunetto, Anirban Som, KR Krishnadas, Sehmus Ozden, Ken P Hackenberg, Yongi Gong, Douglas S Galvao, others (2015): Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes. In: Nature communications, 6 (7291), 2015.